1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#![doc = include_str!("../../README.md")]
#![cfg_attr(test, feature(is_sorted))]
#![feature(impl_trait_projections)]
#![feature(type_alias_impl_trait)]
#![feature(default_free_fn)]
#![feature(drain_filter)]
#![feature(let_chains)]

use std::{io, net::SocketAddr, time::Duration};

use color_eyre::{eyre::bail, Result};
use tap::Pipe;
pub use tokio;
use tokio::task::{JoinError, JoinSet};
use tokio_util::sync::CancellationToken;
use tracing::{info, log::warn};
use uuid7::uuid7;

use crate::{
    model::{Envelope, Log, LogList, Message, Topic},
    tasks::{spawn_background, ContextRef, Swim, TopicEntry},
};

mod codec;
pub mod consts;
pub mod model;
mod tasks;
mod util;

pub use codec::{adapt, adapt_with_option, SerdeBincodeCodec};
pub use model::OrkasConfig;
pub use util::{CRDTReader, CRDTUpdater};

// TODO: enum Status { Starting, Running, Stopped }
/// The main struct of Orkas.
///
/// This is the entry point of the library. This
/// controls the lifecycle of the background tasks and cannot be cloned. To
/// actually interact with the cluster, you need to create a [`Handle`] instance
/// by calling [`Orkas::handle`]. When dropped, background tasks will be stopped
/// forcefully. To gracefully stop the background tasks, call [`Orkas::stop`].
pub struct Orkas {
    ctx: ContextRef,
    addr: SocketAddr,
    join_set: JoinSet<Result<()>>,
}

impl Drop for Orkas {
    fn drop(&mut self) {
        if self.is_running() {
            warn!("Background tasks are not properly stopped. Forcefully stopping.");
            self.cancel();
        }
    }
}

impl Orkas {
    // TODO: more ergonomic `start_with_*` options
    #[inline]
    pub async fn start(config: OrkasConfig) -> io::Result<Self> {
        spawn_background(config.into()).await
    }

    /// Check if all background tasks are still running.
    pub fn is_running(&self) -> bool {
        !(self.ctx.cancel_token.is_cancelled() || self.join_set.is_empty())
    }

    /// Get the context of the background tasks.
    pub fn ctx(&self) -> &ContextRef {
        &self.ctx
    }

    /// Get the address of the background tasks.
    pub fn local_addr(&self) -> SocketAddr {
        self.addr
    }

    /// Get the cancellation token of the background tasks.
    pub fn cancel_token(&self) -> &CancellationToken {
        &self.ctx.cancel_token
    }

    /// Issue a cancellation request to the background tasks. Use
    /// [`Orkas::join`] to wait for the tasks to finish.
    pub fn cancel(&self) {
        if !self.is_running() {
            return;
        }
        self.ctx.cancel();
    }

    /// Forcefully shutdown the background tasks with [`JoinHandle::abort`].
    ///
    /// [`JoinHandle::abort`]: tokio::task::JoinHandle::abort
    pub fn abort(&mut self) {
        if !self.is_running() {
            return;
        }
        self.ctx.stop();
        self.join_set.abort_all()
    }

    /// Wait for all background tasks to finish. Use [`Orkas::cancel`]
    /// beforehand to gracefully stop the tasks.
    pub async fn join(&mut self) -> Option<Vec<Result<Result<()>, JoinError>>> {
        if self.join_set.is_empty() {
            return None;
        }
        self.cancel();
        let mut results = Vec::with_capacity(self.join_set.len());
        while let Some(res) = self.join_set.join_next().await {
            results.push(res);
        }
        Some(results)
    }

    #[inline]
    /// Get a handle to interact with the cluster.
    pub fn handle(&self) -> Handle {
        Handle {
            ctx: self.ctx().clone(),
            addr: self.local_addr(),
        }
    }
}

/// A cheap-to-clone handle to interact with the cluster. This cannot control
/// the lifecycle of the background tasks. For that, you need to use the
/// [`Orkas`] struct.
#[derive(Clone, Debug)]
pub struct Handle {
    ctx: ContextRef,
    addr: SocketAddr,
}

impl Handle {
    async fn connect_to(&self, addr: SocketAddr) -> Result<()> {
        let (send, recv) = tokio::net::TcpStream::connect(addr) // TODO: fine tuning connection or just use quinn
            .await?
            .into_split()
            .pipe(adapt);

        info!(%addr, "Connected");

        // Send the streams to the background task
        self.ctx.conn_inbound.send(send).await?;
        self.ctx.conn_outbound.send((addr, recv)).await?;

        Ok(())
    }

    #[inline]
    fn make_swim(&self, topic: String) -> Result<Swim> {
        Swim::new(self.addr, self.ctx.clone(), topic)
    }

    /// Update a topic and sync with other nodes in the cluster. This update
    /// will be applied to local cluster state first and distributed to
    /// other nodes in the cluster via swim broadcast.
    ///
    /// A [`CRDTUpdater`] will receive a [`LogList`] and `actor` of the node
    /// upon updating, then optionally returns an [`Op`] to be applied to the
    /// [`LogList`].
    ///
    /// [`Op`]: crdts::list::Op
    pub async fn update<F>(&self, topic: impl AsRef<str>, updater: F) -> Result<bool>
    where
        F: CRDTUpdater,
        F::Error: std::error::Error + Send + Sync + 'static,
    {
        self.ctx.update(topic, updater).await
    }

    /// Read a topic and derive data from it
    #[inline]
    pub fn read<F: CRDTReader>(&self, topic: impl AsRef<str>, func: F) -> Option<F::Return> {
        self.ctx.get_topic(topic).map(|x| func.read(x.crdt()))
    }

    /// Emit an event and broadcast it
    #[inline]
    pub fn log(&self, topic: impl AsRef<str>, log: Log) -> Result<()> {
        self.ctx.log(topic, log)
    }

    #[inline]
    pub fn get_topic(&self, topic: impl AsRef<str>) -> Option<TopicEntry<'_>> {
        self.ctx.get_topic(topic)
    }

    pub fn has_topic(&self, topic: impl AsRef<str>) -> bool {
        self.ctx.has_topic(topic)
    }

    /// Create a new topic in current node
    pub async fn new_topic(&self, topic: impl Into<String>) -> Result<()> {
        let topic = topic.into();

        // Spawn the task and create local record
        let swim = self.make_swim(topic.clone())?.spawn();

        let logs = LogList::new();
        let map = limlog::Topic::builder(topic.clone())?.build().await?;
        let topic_record = Topic { swim, logs, map };

        // Insert the topic record
        self.ctx.insert_topic(topic, topic_record);

        Ok(())
    }

    /// Leave a topic cluster
    pub fn quit_topic(&self, topic: impl Into<String>) -> Result<Option<TopicEntry<'_>>> {
        let topic = topic.into();

        let Some(topic_record) = self.ctx.remove_topic(&topic) else { return Ok(None) };

        topic_record.swim().stop();

        Ok(Some(topic_record))
    }

    /// Join a topic cluster with given address and topic name.
    ///
    /// This will start handshake with correspoding SWIM node. Note that initial
    /// state syncing is not garanteed to be completed within this function.
    pub async fn join_one(&self, topic: impl Into<String>, addr: SocketAddr) -> Result<()> {
        // TODO: use `ToSocketAddrs` instead of `SocketAddr`.
        // TODO: join with multiple initial nodes
        let topic = topic.into();
        if self.has_topic(&topic) {
            return Ok(());
        }

        self.connect_to(addr).await?;

        let mut swim = Swim::new(self.addr, self.ctx.clone(), topic.clone())?;

        let mut rt = self.ctx.swim_runtime(&topic);

        // Start announcing
        swim.announce(addr.into(), &mut rt)?;

        // Spawn the SWIM task
        let swim = swim.spawn();
        let logs = LogList::new();
        let map = limlog::Topic::builder(topic.clone())?.build().await?;
        let topic_record = Topic { swim, logs, map };

        // Insert the topic record
        self.ctx.insert_topic(&topic, topic_record);

        // Send all messages from swim to outbound
        rt.flush().await?;
        drop(rt);

        if !self.ctx.wait_for(addr, Duration::from_secs(5)).await {
            bail!("Timeout waiting for initial join")
        }

        // Now swim is online, we can send the snapshot request
        self.ctx
            .msg
            .send(Envelope {
                addr,
                topic,
                body: Message::RequestSnapshot,
                id: uuid7(),
            })
            .await?;

        Ok(())
    }
}